In polar coordinates, [tex]x=r\cos\theta[/tex] and [tex]y=r\sin\theta[/tex]. So the limit is equivalent to
[tex]\displaystyle\lim_{(r,\theta)\to(0,0)}\frac{(r\cos\theta)^6+(r\sin\theta)^4}{(r\cos\theta)^2+(r\sin\theta)^2}=\lim_{(r,\theta)\to(0,0)}r^2(r^2\cos^6\theta+\sin^4\theta)[/tex]
Since [tex]-1\le\cos\theta\le1[/tex] and [tex]-1\le\sin\theta\le1[/tex], we have [tex]0\le\cos^6\theta\le1[/tex] and [tex]0\le\sin^4\theta\le1[/tex], so that the behavior of [tex]r^n[/tex] as [tex]r\to0[/tex] decides the behavior of the overall function, and the limit would be 0.