Respuesta :
Answer:
y=-3/4x-1/2
Step-by-step explanation:
Using the slope equation,
m=y₂-y₁
____
x₂-x₁
you get the slope:
m=-5-1/6+2
m=-6/8
m=-3/4
We find that the intercept is -1/2.
The equation is y=-3/4x-1/2
Hello!
The answer is:
The equation of the line that passes through the points (-2,1) and (6,-5) is:
[tex]y=-\frac{3}{4}x-\frac{1}{2}[/tex]
Why?
To solve the problem, we can use the following formula:
We have that:
[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}*(x-x_1)[/tex]
So, using the given points (-2,1) and (6,-5), we have:
[tex]y-1=\frac{-5-1}{6-(-2)}*(x-(-2))[/tex]
[tex]y-1=\frac{-6}{6+2}*(x+2)[/tex]
[tex]y-1=\frac{-6}{8}*(x+2)[/tex]
[tex]y-1=-\frac{3}{4}*(x+2)[/tex]
[tex]y=-\frac{3}{4}*(x+2)+1[/tex]
[tex]y=-\frac{3}{4}*(x)-\frac{3}{4}**(2)+1[/tex]
[tex]y=-\frac{3}{4}(x)-\frac{6}{4})+1[/tex]
[tex]y=-\frac{3}{4}(x)-\frac{3}{2})+1[/tex]
[tex]y=-\frac{3}{4}x-\frac{1}{2}[/tex]
Hence, we have that the equation of the line that passes through the points (-2,1) and (6,-5) is:
[tex]y=-\frac{3}{4}x-\frac{1}{2}[/tex]
Have a nice day!