If a rectangle is not a square, what is the greatest number of lines of symmetry that can be drawn
![If a rectangle is not a square what is the greatest number of lines of symmetry that can be drawn class=](https://us-static.z-dn.net/files/d07/4aa0851462e2479c60946174928537de.png)
Answer:
B
Step-by-step explanation:
what I did was I drew a square and folded it if both sides matched i knew that that was a line of symmetry
Answer:
B) 2
Step-by-step explanation:
Given that a rectangle is not a square.
Hence we find that opposite sides are equal.
If we mark midpoints on all sides then the vertical line joining mid points and horizontal lines joining next pair of midpoint of opposite sides are the lines of symmetry
There can be no other line of symmetry
Hence no of lines of symmetry for a rectangle = 2