Respuesta :

Answer:

[tex]\frac{1}{x^2y^6}[/tex]

Step-by-step explanation:

We are given [tex](xy^3)^2 \cdot (xy^3)^{-4}[/tex]

First rule I'm going to use is [tex](m^rn^p)^s=m^{r \cdot s}n^{p \cdot s}[/tex].

This gives us:

[tex](xy^3)^2 \cdot (xy^3)^{-4}[/tex] is

[tex](x^2y^6) \cdot (x^{-4}y^{-12})[/tex].

Now pair up the bases that are the same:

[tex](x^2x^{-4}) \cdot (y^6y^{-12})[/tex].

Add the exponents when multiplying if the bases are the same:

[tex]x^{-2} \cdot y^{-6}[/tex]

Now usually teachers don't like negative exponents.

To get rid of the negative exponents just take the reciprocal:

[tex]\frac{1}{x^2} \cdot \frac{1}{y^6}[/tex]

[tex]\frac{1}{x^2y^6}[/tex]

ACCESS MORE