I really need help with this
![I really need help with this class=](https://us-static.z-dn.net/files/ddb/9f2d8d9045e01b07596787148033e964.png)
Answer:
[tex]\frac{1}{x^2y^6}[/tex]
Step-by-step explanation:
We are given [tex](xy^3)^2 \cdot (xy^3)^{-4}[/tex]
First rule I'm going to use is [tex](m^rn^p)^s=m^{r \cdot s}n^{p \cdot s}[/tex].
This gives us:
[tex](xy^3)^2 \cdot (xy^3)^{-4}[/tex] is
[tex](x^2y^6) \cdot (x^{-4}y^{-12})[/tex].
Now pair up the bases that are the same:
[tex](x^2x^{-4}) \cdot (y^6y^{-12})[/tex].
Add the exponents when multiplying if the bases are the same:
[tex]x^{-2} \cdot y^{-6}[/tex]
Now usually teachers don't like negative exponents.
To get rid of the negative exponents just take the reciprocal:
[tex]\frac{1}{x^2} \cdot \frac{1}{y^6}[/tex]
[tex]\frac{1}{x^2y^6}[/tex]