Answer:
[tex](-\frac{3}{4})(\frac{7}{8})[/tex] ↔ [tex]-\frac{21}{32}[/tex]
[tex](\frac{2}{3})(-4)(9)[/tex] ↔ [tex]-24[/tex]
[tex](\frac{5}{16})(-2)(-4)(-\frac{4}{5})[/tex] ↔ [tex]-2[/tex]
[tex](2\frac{3}{5})(\frac{7}{9})[/tex] ↔ [tex]\frac{91}{45}[/tex]
Step-by-step explanation:
The first expression is
[tex](-\frac{3}{4})(\frac{7}{8})[/tex]
On simplification we get
[tex]-\frac{3\times 7}{4\times 8}[/tex]
[tex]-\frac{21}{32}[/tex]
Therefore the product of [tex](-\frac{3}{4})(\frac{7}{8})[/tex] is [tex]-\frac{21}{32}[/tex].
The second expression is
[tex](\frac{2}{3})(-4)(9)[/tex]
On simplification we get
[tex](\frac{2}{3})(-36)[/tex]
[tex]-\frac{72}{3}[/tex]
[tex]-24[/tex]
Therefore, the product of [tex](\frac{2}{3})(-4)(9)[/tex] is [tex]-24[/tex].
Similarly,
[tex](\frac{5}{16})(-2)(-4)(-\frac{4}{5})\Rightarrow (\frac{5}{16})(8)(-\frac{4}{5})=(\frac{5}{2})(-\frac{4}{5})=-2[/tex]
[tex](2\frac{3}{5})(\frac{7}{9})=(\frac{13}{5})(\frac{7}{9})=\frac{91}{45}[/tex]