Respuesta :

Answer:

[tex]y-\frac{3}{2}=\frac{-13}{3}(x-\frac{1}{2})[/tex] point-slope form

[tex]13x+3y=11[/tex] (standard form)

Let me know if you prefer another form.

Step-by-step explanation:

The slope of a line can be found using [tex]\frac{y_2-y_1}{x_2-x_1}[/tex] provided you are given two points on the line.

We are.

Now you can use that formula.  But I really love to just line up the points vertically then subtract them vertically then put 2nd difference over 1st difference.

 (4/5  ,  1/5)

-( 1/2  ,  3/2)

-----------------

3/10          -13/10

2nd/1st = [tex]\frac{\frac{-13}{10}}{\frac{3}{10}}=\frac{-13}{3}[/tex] is our slope.

So the following is point-slope form for a linear equaiton:

[tex]y-y_1=m(x-x_1) \text{ where } m \text{ is slope and } (x_1,y_1) \text{ is a point on the line }[/tex]    

Plug in a point [tex](x_1,y_1)=(\frac{1}{2},\frac{3}{2}) \text{ and } m=\frac{-13}{3}[/tex].

This gives:

[tex]y-\frac{3}{2}=\frac{-13}{3}(x-\frac{1}{2})[/tex]

I'm going to distribute:

[tex]y-\frac{3}{2}=\frac{-13}{3}x-\frac{-13}{6}[/tex]

Now I don't like these fractions so I'm going to multiply both sides by the least common multiply of 2,3, and 6 which is 6:

[tex]6y-9=-26x+13[/tex]

Add 26x on both sides:

[tex]26x+6y-9=13[/tex]

Add 9 on both sides:

[tex]26x+6y=22[/tex] This is actually standard form of a line.

It can be simplified though.

Divide both sides by 2:

[tex]13x+3y=11[/tex] (standard form)

gmany

Answer:

[tex]\large\boxed{y=-\dfrac{13}{3}x+\dfrac{11}{3}}-\bold{slope\ intercept\ form}\\\boxed{13x+3y=11}-\bold{standard\ form}[/tex]

Step-by-step explanation:

The slope-intercept form of an equation of a line:

[tex]y=mx+b[/tex]

m - slope

b - y-intercept

The formula of a slope:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

We have two points

[tex]\left(\dfrac{4}{5},\ \dfrac{1}{5}\right),\ \left(\dfrac{1}{2},\ \dfrac{3}{2}\right)[/tex]

Convert fractions to the decimals

(divide the numerator by the denominator) :

[tex]\dfrac{4}{5}=0.8,\ \dfrac{1}{5}=0.2,\ \dfrac{1}{2}=0.5,\ \dfrac{3}{2}=1.5[/tex]

[tex]\left(\dfrac{4}{5},\ \dfrac{1}{5}\right)=(0.8,\ 0.2)\\\\\left(\dfrac{1}{2},\ \dfrac{3}{2}\right)=(0.5,\ 1.5)[/tex]

Calculate the slope:

[tex]m=\dfrac{1.5-0.2}{0.5-0.8}=\dfrac{1.3}{-0.3}=-\dfrac{13}{3}[/tex]

Put the value of slope and the coordinates of the first point to the equation of a line:

[tex]0.2=-\dfrac{13}{3}(0.8)+b[/tex]      multiply both sides by 3

[tex]0.6=(-13)(0.8)+3b[/tex]

[tex]0.6=-10.4+3b[/tex]           add 10.4 to both sides

[tex]11=3b[/tex]           divide both sides by 3

[tex]\dfrac{11}{3}=b\to b=\dfrac{11}{3}[/tex]

Finally:

[tex]y=-\dfrac{13}{3}x+\dfrac{11}{3}[/tex] - slope-intercept form

Convert to the standard form (Ax + By = C):

[tex]y=-\dfrac{13}{3}x+\dfrac{11}{3}[/tex]      multiply both sides by 3

[tex]3y=-13x+11[/tex]          add 13x to both sides

[tex]13x+3y=11[/tex] - standard form