Respuesta :
Answer:
[tex]y-\frac{3}{2}=\frac{-13}{3}(x-\frac{1}{2})[/tex] point-slope form
[tex]13x+3y=11[/tex] (standard form)
Let me know if you prefer another form.
Step-by-step explanation:
The slope of a line can be found using [tex]\frac{y_2-y_1}{x_2-x_1}[/tex] provided you are given two points on the line.
We are.
Now you can use that formula. But I really love to just line up the points vertically then subtract them vertically then put 2nd difference over 1st difference.
(4/5 , 1/5)
-( 1/2 , 3/2)
-----------------
3/10 -13/10
2nd/1st = [tex]\frac{\frac{-13}{10}}{\frac{3}{10}}=\frac{-13}{3}[/tex] is our slope.
So the following is point-slope form for a linear equaiton:
[tex]y-y_1=m(x-x_1) \text{ where } m \text{ is slope and } (x_1,y_1) \text{ is a point on the line }[/tex]
Plug in a point [tex](x_1,y_1)=(\frac{1}{2},\frac{3}{2}) \text{ and } m=\frac{-13}{3}[/tex].
This gives:
[tex]y-\frac{3}{2}=\frac{-13}{3}(x-\frac{1}{2})[/tex]
I'm going to distribute:
[tex]y-\frac{3}{2}=\frac{-13}{3}x-\frac{-13}{6}[/tex]
Now I don't like these fractions so I'm going to multiply both sides by the least common multiply of 2,3, and 6 which is 6:
[tex]6y-9=-26x+13[/tex]
Add 26x on both sides:
[tex]26x+6y-9=13[/tex]
Add 9 on both sides:
[tex]26x+6y=22[/tex] This is actually standard form of a line.
It can be simplified though.
Divide both sides by 2:
[tex]13x+3y=11[/tex] (standard form)
Answer:
[tex]\large\boxed{y=-\dfrac{13}{3}x+\dfrac{11}{3}}-\bold{slope\ intercept\ form}\\\boxed{13x+3y=11}-\bold{standard\ form}[/tex]
Step-by-step explanation:
The slope-intercept form of an equation of a line:
[tex]y=mx+b[/tex]
m - slope
b - y-intercept
The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have two points
[tex]\left(\dfrac{4}{5},\ \dfrac{1}{5}\right),\ \left(\dfrac{1}{2},\ \dfrac{3}{2}\right)[/tex]
Convert fractions to the decimals
(divide the numerator by the denominator) :
[tex]\dfrac{4}{5}=0.8,\ \dfrac{1}{5}=0.2,\ \dfrac{1}{2}=0.5,\ \dfrac{3}{2}=1.5[/tex]
[tex]\left(\dfrac{4}{5},\ \dfrac{1}{5}\right)=(0.8,\ 0.2)\\\\\left(\dfrac{1}{2},\ \dfrac{3}{2}\right)=(0.5,\ 1.5)[/tex]
Calculate the slope:
[tex]m=\dfrac{1.5-0.2}{0.5-0.8}=\dfrac{1.3}{-0.3}=-\dfrac{13}{3}[/tex]
Put the value of slope and the coordinates of the first point to the equation of a line:
[tex]0.2=-\dfrac{13}{3}(0.8)+b[/tex] multiply both sides by 3
[tex]0.6=(-13)(0.8)+3b[/tex]
[tex]0.6=-10.4+3b[/tex] add 10.4 to both sides
[tex]11=3b[/tex] divide both sides by 3
[tex]\dfrac{11}{3}=b\to b=\dfrac{11}{3}[/tex]
Finally:
[tex]y=-\dfrac{13}{3}x+\dfrac{11}{3}[/tex] - slope-intercept form
Convert to the standard form (Ax + By = C):
[tex]y=-\dfrac{13}{3}x+\dfrac{11}{3}[/tex] multiply both sides by 3
[tex]3y=-13x+11[/tex] add 13x to both sides
[tex]13x+3y=11[/tex] - standard form