Respuesta :

Answer:

Find the explicit from for the sequence [tex]t_n=t_{n-1}+4,t=6[/tex]:

[tex]a_n=4n+2[/tex]

This next question I edited a bit.  Your question just says find the four terms.  I'm assuming they meant the first four. I also changed the c to an [tex]a[/tex].

Find the first four terms of the sequence given by: [tex]a_n=n a_{n-1}-3,a_1=2[/tex]:

a) 2,1,0.-3

You might want to read that second question again because there is errors in the question or things that don't really make sense.  I made my own interpretation of the problem based on my own mathematical experience.

Step-by-step explanation:

So your first question actually says that you can find a term by taking that term's previous term and adding 4.

So more terms of the sequence starting at first term 6 is:

6,10,14,18,....

This is an arithmetic sequence.  When thinking of arithmetic sequences you should just really by thinking about equations of lines.

Let's say we have this table for (x,y):

x  |   y

----------

1      6

2    10

3     14

4     18

So we already know the slope which is the common difference of an arithmetic sequence.

We also know point slope form of a line is [tex]y-y_1=m(x-x_1)[/tex] where m is the slope and [tex](x_1,y_1)[/tex] is a point on the line.  You can use any point on the line. I'm going to use the first point (1,6) with my slope=4.

[tex]y-6=4(x-1)[/tex]

[tex]y=6+4(x-1)[/tex]    :I added 6 on both sides here.

[tex]y=6+4x-4[/tex]     :I distribute here.

[tex]y=4x+2[/tex]        :This is what I get after combining like terms.

So [tex]a_n=y[/tex] and [tex]x=n[/tex] so you have:

[tex]a_n=4n+2[/tex]

---------------------------------------------------------------------------------------

The first four terms of this sequence will be given by:

[tex]a_1,a_2,a_3,a_4[/tex]

[tex]a_1=2[/tex] so it is between choice a, c, and d.

[tex]a_n=na_{n-1}-3[/tex]

To find [tex]a_2[/tex] replace n with 2:

[tex]a_2=2a_{1}-3[/tex]

[tex]a_2=2(2)-3[/tex]

[tex]a_2=4-3[/tex]

[tex]a_2=1[/tex]

So we have to go another further the only one that has first two terms 2,1 is choice a.

ACCESS MORE