Answer:
[tex]\frac{7}{2}x^{2} +3cosh(x)+C[/tex]
Step-by-step explanation:
The antiderivative is found applying the fundamental theorem of calculus:
[tex]\frac{d}{dx}\int\limits^{x}_{a} {f(x)} \, dx=f(x)[/tex]
Where a is any number where f(x) is a continuous function.
Here, the antiderivative is [tex]\int\limits^{}_{} {f(x)}dx[/tex]
The antiderivative requires to integrate f(x), we apply first the polynomials rule
[tex]\int\limits^{}_{} {x^{n} } \, dx =\frac{1}{n+1}x^{n+1}[/tex]
For this case n=1 and the first part of the integral is:
[tex]\int\limits^{}_{} {7x} \, dx =\frac{7}{2}x^{2}[/tex]
The integral of sinh(x) is cosh(x), so, the total antiderivative is
[tex]\frac{7}{2}x^{2}+3cosh(x)+C[/tex]
Checking the answer:
[tex]\frac{d(\frac{7}{2}x^{2}+3cosh(x)+C)}{dx}=\frac{7}{2}(2x)+3sinh(x)=7x+3sinh(x)[/tex]