Answer:
C. P69,256.82
Step-by-step explanation:
We know that,
The amount formula in compound interest is,
[tex]A=P(1+\frac{r_1}{n_1})^{n_1t_1} (1+\frac{r_2}{n_2})^{n_2t_2}.......[/tex]
Where, P is the principal amount,
[tex]r_1, r_2....[/tex] are the annual rate for the different periods,
[tex]t_1, t_2,.....[/tex] are the number of year for different periods,
[tex]n_1, n_2, n_3...[/tex] are the number of periods,
Given,
A = P 200,000,
[tex]r_1=10%=0.1[/tex], [tex]n_1=4[/tex], [tex]t_1=5[/tex],[tex]r_2=12%=0.12[/tex], [tex]n_2=1[/tex], [tex]t_2=5[/tex]
Thus, by the above formula the final amount would be,
[tex]200000=P(1+\frac{0.1}{4})^{4\times 5}(1+\frac{0.12}{1})^{1\times 5}[/tex]
[tex]200000=P(1+0.025)^{20}(1+0.12)^5[/tex]
[tex]200000=P(1.025)^{20}(1.12)^5[/tex]
[tex]\implies P=69,256.824\approx 69,256.82[/tex]
Option C is correct.