In order for [tex]p_{X,Y}(x,y)[/tex] to be a valid PMF, its integral over the distribution's support must be equal to 1.
[tex]p_{X,Y}(x,y)=\begin{cases}\dfrac{c(x+y)}2&\text{for }x\in\{1,2,4\}\text{ and }y\in\{1,3\}\\\\0&\text{otherwise}\end{cases}[/tex]
There are 3*2 = 6 possible outcomes for this distribution, so that
[tex]\displaystyle\sum_{x,y}p_{X,Y}(x,y)=\sum_{x\in\{1,2,4\}}\sum_{y\in\{1,3\}}\frac{c(x+y)}2=1[/tex]
[tex]1=\displaystyle\frac c2\sum_{x\in\{1,2,4\}}((x+1)+(x+3))=\frac c2\sum_{x\in\{1,2,4\}(2x+4)[/tex]
[tex]1=\displaystyle\frac c2((2+4)+(4+4)+(8+4))[/tex]
[tex]1=13c\implies\boxed{c=\dfrac1{13}}[/tex]