Respuesta :
Answer:
[tex]\boxed{\text{-194 kJ/mol}}[/tex]
Explanation:
Mn + 2HCl ⟶ MnCl₂ + H₂
There are two energy flows in this reaction.
[tex]\begin{array}{cccl}\text{Heat from reaction} & + &\text{Heat absorbed by water} & = 0\\q_{1} & + & q_{2} & =0\\n\Delta_{r}H & + & mC\Delta T & =0\\\end{array}[/tex]
Data:
Mass of Mn = 0.625 g
V = 100.0 mL
T₁ = 23.5 °C
T₂ = 28.8 °C
Calculations:
(a) Moles of Mn
[tex]n = \text{0.625 g Mn} \times \dfrac{\text{1 mol Mn }}{\text{54.94 g Mn}} = \text{0.011 38 mol Mn}[/tex]
(b) Mass of solution
[tex]m = \text{100.0 mL} \times \dfrac{\text{1.00 g}}{\text{1 mL}} = \text{100.0 g}[/tex]
(c) ΔT
ΔT = T₂ - T₁ = 28.8 °C – 23.5 °C = 5.3 °C
(d) q₁
[tex]q_{1} = \text{0.011 38 mol Mn} \times \Delta_{r}H = 0.01138 \Delta_{r}H \text{ mol}[/tex]
(e) q₂
q₂ = 100.0 × 4.184 × 5.3 = 2220 J
(f) ΔH
[tex]\begin{array}{rcl}0.01138 \Delta_{r}H + 2220 & = & 0\\0.01138 \Delta_{r}H & = & -2220\\\\\Delta_{r}H & = & \dfrac{-2220}{0.01138}\\\\ & = & \text{-194000 J/mol}\\ & = & \boxed{\textbf{-194 kJ/mol}}\\\end{array}\\\\[/tex]
The ΔHrxn for the reaction as written is -201.4 KJ/mol.
From the information provided in the question;
Mass of Mn = 0.625 g
Volume of solution = 100.0 mL
Initial temperature = 23.5 °C
Final temperature = 28.8 °C
Now;
The equation of the reaction is;
Mn(s) + 2HCl(aq) ------> MnCl2(aq) + H2(g)
Number of moles of Mn = 0.625 g /55 g/mol = 0.011 moles
Temperature rise = Final temperature - Initial temperature = 28.8 °C - 23.5 °C = 5.3 °C
Mass of the solution = Density of solution × volume of solution = 1.00 g/mL × 100.0 mL = 100 g
From the formula;
ΔHrxn =- mcθ
ΔHrxn is negative because heat is evolved.
m = mass of solution
c = specific heat capacity of the solution
θ= temperature rise
ΔHrxn = mcθ/number of moles
ΔHrxn =-(100 g × 4.18 J/g∘C × 5.3 °C)/0.011 moles
ΔHrxn = -201.4 KJ/mol
Learn more: https://brainly.com/question/13164491
When 0.620 g Mn is combined with enough hydrochloric acid to make 100.0 mL of solution in a coffee-cup calorimeter, all of the Mn reacts, raising the temperature of the solution from 23.1 ∘C to 28.9 ∘C. Find ΔHrxn for the reaction as written. (Assume that the specific heat capacity of the solution is 4.18 J/g∘C and the density is 1.00 g/mL.)