Respuesta :
Answer:
3.8 x 10⁴ Ω
Explanation:
C = Capacitance = 165 μF
R = resistance of the filament = ?
t = time taken to charge the capacitor = 10 s
Q₀ = maximum charge stored by capacitor
Q = charge stored by capacitor at time "t" = 0.80 Q₀
T = Time constant
Charge stored by capacitor at any time is given as
[tex]Q = Q_{o}(1 - e^{\frac{-t}{T}})[/tex]
[tex]0.80 Q_{o} = Q_{o}(1 - e^{\frac{-10}{T}})[/tex]
T = 6.21 s
Time constant is given as
T = RC
6.21 = R (165 x 10⁻⁶)
R = 3.8 x 10⁴ Ω
The resistance of the filament in the bulb R = 3.8 x 10⁴ Ω
What will be the resistance in the filament of the bulb?
It is given that:-
Capacitance C= 165 μF
Resistance of the filament = R=?
Time taken to charge the capacitor = t = 10 s
Now,
Q₀ = maximum charge which can be stored by the capacitor
Since the capacitor to 80% of its maximum charge
Then,
Q = charge stored by capacitor at time "t" = 0.80 Q₀
T = Time constant
The charge stored by the capacitor at any time is given as
[tex]Q=Q_{0} (1-e^{\dfrac{-t}{T} } )[/tex]
[tex]0.80Q_{0} =Q_{0} (1-e^{\dfrac{-10}{T} } )[/tex]
[tex]T=6.21 sec[/tex]
Now the Time constant is given as
[tex]T=R\times C[/tex]
[tex]6.21= R\times (165\times 10^{-6} )[/tex]
[tex]R=3.8\times 10^{4}[/tex]Ω
The resistance of the filament in the bulb R = 3.8 x 10⁴ Ω
To know more about Capacitor and Resistance follow
https://brainly.com/question/13578522