The magnitude of Earth’s magnetic field is about 0.5 gauss near Earth’s surface. What’s the maximum possible magnetic force on an electron with kinetic energy of 1 keV? Compare with the gravitational force on the electron.

Respuesta :

Answer:

[tex]F = 1.5 \times 10^{-16} N[/tex]

this force is [tex]1.68 \times 10^{13}[/tex] times more than the gravitational force

Explanation:

Kinetic Energy of the electron is given as

[tex]KE = 1 keV[/tex]

[tex]KE = 1 \times 10^3 (1.6 \times 10^{-19}) J[/tex]

[tex]KE = 1.6 \times 10^{-16} J[/tex]

now the speed of electron is given as

[tex]KE = \frac{1}{2}mv^2[/tex]

now we have

[tex]v = \sqrt{\frac{2 KE}{m}}[/tex]

[tex]v = 1.87 \times 10^7 m/s[/tex]

now the maximum force due to magnetic field is given as

[tex]F = qvB[/tex]

[tex]F = (1.6\times 10^{-19})(1.87 \times 10^7)(0.5 \times 10^{-4})[/tex]

[tex]F = 1.5 \times 10^{-16} N[/tex]

Now if this force is compared by the gravitational force on the electron then it is

[tex]\frac{F}{F_g} = \frac{1.5 \times 10^{-16}}{9.1 \times 10^{-31} (9.8)}[/tex]

[tex]\frac{F}{F_g} = 1.68 \times 10^{13}[/tex]

so this force is [tex]1.68 \times 10^{13}[/tex] times more than the gravitational force

RELAXING NOICE
Relax