Answer:
[tex]F = 1.5 \times 10^{-16} N[/tex]
this force is [tex]1.68 \times 10^{13}[/tex] times more than the gravitational force
Explanation:
Kinetic Energy of the electron is given as
[tex]KE = 1 keV[/tex]
[tex]KE = 1 \times 10^3 (1.6 \times 10^{-19}) J[/tex]
[tex]KE = 1.6 \times 10^{-16} J[/tex]
now the speed of electron is given as
[tex]KE = \frac{1}{2}mv^2[/tex]
now we have
[tex]v = \sqrt{\frac{2 KE}{m}}[/tex]
[tex]v = 1.87 \times 10^7 m/s[/tex]
now the maximum force due to magnetic field is given as
[tex]F = qvB[/tex]
[tex]F = (1.6\times 10^{-19})(1.87 \times 10^7)(0.5 \times 10^{-4})[/tex]
[tex]F = 1.5 \times 10^{-16} N[/tex]
Now if this force is compared by the gravitational force on the electron then it is
[tex]\frac{F}{F_g} = \frac{1.5 \times 10^{-16}}{9.1 \times 10^{-31} (9.8)}[/tex]
[tex]\frac{F}{F_g} = 1.68 \times 10^{13}[/tex]
so this force is [tex]1.68 \times 10^{13}[/tex] times more than the gravitational force