Answer: The moles of hydrogen gas that can be formed are 0.18 moles.
Explanation:
To calculate the number of moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex] ....(1)
Given mass of sodium metal = 13.08 g
Molar mass of sodium metal = 23 g/mol
Putting values in above equation, we get:
[tex]\text{Moles of sodium metal}=\frac{13.08g}{23g/mol}=0.57mol[/tex]
Given mass of hydrochloric acid = 13.08 g
Molar mass of hydrochloric acid = 36.5 g/mol
Putting values in above equation, we get:
[tex]\text{Moles of hydrochloric acid}=\frac{13.08g}{36.5g/mol}=0.36mol[/tex]
For the given chemical equation:
[tex]2Na+2HCI\rightarrow 2NaCl+H_2[/tex]
By Stoichiometry of the reaction:
2 moles of hydrochloric acid reacts with 2 moles of sodium metal.
So, 0.36 moles of hydrochloric acid will react with = [tex]\frac{2}{2}\times 0.36=0.36moles[/tex] of sodium metal.
As, given amount of sodium metal is more than the required amount. Thus, it is considered as an excess reagent.
So, hydrochloric acid is considered as a limiting reagent because it limits the formation of products.
By Stoichiometry of the above reaction:
2 moles of hydrochloric acid is producing 1 moles of hydrogen gas.
So, 0.36 moles of hydrochloric acid will produce = [tex]\frac{1}{2}\times 0.36=0.18moles[/tex] of hydrogen gas.
Hence, the moles of hydrogen gas that can be formed are 0.18 moles.