Consider the following reaction: 2Na 2HCI > 2N»C1 + H2 How many mols of hydrogen gas (H2) can be produced if you begin with 13.08 grams of each reactant?

Respuesta :

Answer: The moles of hydrogen gas that can be formed are 0.18 moles.

Explanation:

To calculate the number of moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]   ....(1)

  • For Sodium metal:

Given mass of sodium metal = 13.08 g

Molar mass of sodium metal = 23 g/mol

Putting values in above equation, we get:  

[tex]\text{Moles of sodium metal}=\frac{13.08g}{23g/mol}=0.57mol[/tex]

  • For hydrochloric acid:

Given mass of hydrochloric acid = 13.08 g

Molar mass of hydrochloric acid = 36.5 g/mol

Putting values in above equation, we get:  

[tex]\text{Moles of hydrochloric acid}=\frac{13.08g}{36.5g/mol}=0.36mol[/tex]

For the given chemical equation:

[tex]2Na+2HCI\rightarrow 2NaCl+H_2[/tex]

By Stoichiometry of the reaction:

2 moles of hydrochloric acid reacts with 2 moles of sodium metal.

So, 0.36 moles of hydrochloric acid will react with = [tex]\frac{2}{2}\times 0.36=0.36moles[/tex] of sodium metal.

As, given amount of sodium metal is more than the required amount. Thus, it is considered as an excess reagent.

So, hydrochloric acid is considered as a limiting reagent because it limits the formation of products.

By Stoichiometry of the above reaction:

2 moles of hydrochloric acid is producing 1 moles of hydrogen gas.

So, 0.36 moles of hydrochloric acid will produce = [tex]\frac{1}{2}\times 0.36=0.18moles[/tex] of hydrogen gas.

Hence,  the moles of hydrogen gas that can be formed are 0.18 moles.

ACCESS MORE
EDU ACCESS