Write an equation of the line given the two points below (Write your equation in slope-intercept form, y=mx+b): (-4, 4) and (6, -4)

Respuesta :

Answer:

m = -0.8

Step-by-step explanation:

Use slope formula: (y2 - y1) / (x2 - x1)

Apply formula: ( 8 ) / (-10)

Simplify: -4 / 5

Please mark for brainliest!! :D Thanks!

For any more questions or explanation / information, please comment below and I'll respond ASAP :)

[tex]\bf (\stackrel{x_1}{-4}~,~\stackrel{y_1}{4})\qquad (\stackrel{x_2}{6}~,~\stackrel{y_2}{-4}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{-4-4}{6-(-4)}\implies \cfrac{-8}{6+4}\implies \cfrac{-8}{10}\implies -\cfrac{4}{5}[/tex]

[tex]\bf \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-4=-\cfrac{4}{5}[x-(-4)]\implies y-4=-\cfrac{4}{5}(x+4) \\\\\\ y-4=-\cfrac{4}{5}x-\cfrac{16}{5}\implies y=-\cfrac{4}{5}x-\cfrac{16}{5}+4\implies y=-\cfrac{4}{5}x+\cfrac{4}{5}[/tex]