contestada

A 7.00 g bullet moving horizontally at 200 m/s strikes and passes through a 150 g tin can sitting on a post. Just after the impact, the can has a horizontal speed of 180 cm/s. What was the bullet’s speed after leaving the can?

Respuesta :

Answer:

160 m/s

Explanation:

Momentum is conserved:

mu = mv + MV

(7.00) (200) = (7.00)v + (150) (1.8)

v = 160 m/s

Answer:

161.43m/s

Explanation:

Using the principle of conservation of linear momentum i.e

Total momentum before impact is equal to total momentum after impact.

=> Momentum of bullet before impact + Momentum of tin before impact

                               =

   Momentum of bullet after impact + Momentum of tin after impact

   i.e

   [tex]m_{B}[/tex] [tex]u_{B}[/tex] + [tex]m_{T}[/tex] [tex]u_{T}[/tex] = [tex]m_{B}[/tex] [tex]v_{B}[/tex] + [tex]m_{T}[/tex] [tex]v_{T}[/tex]

Where;

[tex]m_{B}[/tex] = mass of bullet = 7.00g = 0.007kg

[tex]m_{T}[/tex] = mass of tin can = 150g = 0.15kg

[tex]u_{B}[/tex] = initial velocity of bullet before impact = 200m/s

[tex]u_{T}[/tex] = initial velocity of tin can before impact = 0m/s (since the can is stationary)

[tex]v_{B}[/tex] = final velocity of the bullet after impact

[tex]v_{T}[/tex] = final velocity of the tin can after impact = 180cm/s = 1.8m/s

Substitute these values into the equation above;

=>    [tex]m_{B}[/tex] [tex]u_{B}[/tex] + [tex]m_{T}[/tex] [tex]u_{T}[/tex] = [tex]m_{B}[/tex] [tex]v_{B}[/tex] + [tex]m_{T}[/tex] [tex]v_{T}[/tex]

=> (0.007 x 200) + (0.15 x 0) = (0.007 x [tex]v_{B}[/tex])  + (0.15 x 1.8)

=> 1.4 + 0 = 0.007[tex]v_{B}[/tex] + 0.27

=> 1.4 = 0.007[tex]v_{B}[/tex] + 0.27

=> 0.007[tex]v_{B}[/tex] = 1.4 - 0.27

=> 0.007[tex]v_{B}[/tex] = 1.13

Solve for [tex]v_{B}[/tex]

=> [tex]v_{B}[/tex] = 1.13 / 0.007

=> [tex]v_{B}[/tex] = 161.43m/s

Therefore, the speed of the bullet after impact (leaving the can) is 161.43m/s