Respuesta :
Answer:
160 m/s
Explanation:
Momentum is conserved:
mu = mv + MV
(7.00) (200) = (7.00)v + (150) (1.8)
v = 160 m/s
Answer:
161.43m/s
Explanation:
Using the principle of conservation of linear momentum i.e
Total momentum before impact is equal to total momentum after impact.
=> Momentum of bullet before impact + Momentum of tin before impact
=
Momentum of bullet after impact + Momentum of tin after impact
i.e
[tex]m_{B}[/tex] [tex]u_{B}[/tex] + [tex]m_{T}[/tex] [tex]u_{T}[/tex] = [tex]m_{B}[/tex] [tex]v_{B}[/tex] + [tex]m_{T}[/tex] [tex]v_{T}[/tex]
Where;
[tex]m_{B}[/tex] = mass of bullet = 7.00g = 0.007kg
[tex]m_{T}[/tex] = mass of tin can = 150g = 0.15kg
[tex]u_{B}[/tex] = initial velocity of bullet before impact = 200m/s
[tex]u_{T}[/tex] = initial velocity of tin can before impact = 0m/s (since the can is stationary)
[tex]v_{B}[/tex] = final velocity of the bullet after impact
[tex]v_{T}[/tex] = final velocity of the tin can after impact = 180cm/s = 1.8m/s
Substitute these values into the equation above;
=> [tex]m_{B}[/tex] [tex]u_{B}[/tex] + [tex]m_{T}[/tex] [tex]u_{T}[/tex] = [tex]m_{B}[/tex] [tex]v_{B}[/tex] + [tex]m_{T}[/tex] [tex]v_{T}[/tex]
=> (0.007 x 200) + (0.15 x 0) = (0.007 x [tex]v_{B}[/tex]) + (0.15 x 1.8)
=> 1.4 + 0 = 0.007[tex]v_{B}[/tex] + 0.27
=> 1.4 = 0.007[tex]v_{B}[/tex] + 0.27
=> 0.007[tex]v_{B}[/tex] = 1.4 - 0.27
=> 0.007[tex]v_{B}[/tex] = 1.13
Solve for [tex]v_{B}[/tex]
=> [tex]v_{B}[/tex] = 1.13 / 0.007
=> [tex]v_{B}[/tex] = 161.43m/s
Therefore, the speed of the bullet after impact (leaving the can) is 161.43m/s