Respuesta :
Answer:
C' = (-6, -5)
Step-by-step explanation:
We are given that a triangle ABC is reflected over the line y = x.
Given the points of the vertices of the triangle ABC to be (-6, -1) (-2, -1) and (-5, -6) respectively, we are to determine the coordinates of C'.
When reflected over the line y = x, the x and y coordinates exchange their place.
(x, y) ---> (y, x)
Therefore, if C = (-5,-6) then C' = (-6, -5).
Answer:
[tex]\boxed{(-6,-5)}}[/tex]
Step-by-step explanation:
When you reflect a point (x, y) across the line y = x, the coordinates get interchanged. Thus,
(a,b) ⟶ (b,a)
Here are the coordinates of your triangle before and after the reflection.
[tex]\begin{array}{rcl}\textbf{Before} & & \textbf{After}\\A(-6,-1) & \longrightarrow \, & A'(-1,-6)\\B(-2,-1) & \longrightarrow \, & B'(-1,-2)\\C(-5,-6) & \longrightarrow \, & C'(-6,-5)\\\end{array}[/tex]
The diagram below shows ∆ABC with its reflection ∆A'B'C'.
[tex]\text{The coordinates of C' have become } \boxed{\mathbf{(-6,-5)}}[/tex]
