Respuesta :
Answer:
E = 1.602v
Explanation:
Use the Nernst Equation => E(non-std) = E⁰(std) – (0.0592/n)logQc …
Zn⁰(s) => Zn⁺²(aq) + 2 eˉ
2Ag⁺(aq) + 2eˉ=> 2Ag⁰(s)
_____________________________
Zn⁰(s) + 2Ag⁺(aq) => Zn⁺²(aq) + 2Ag(s)
Given E⁰ = 1.562v
Qc = [Zn⁺²(aq)]/[Ag⁺]² = (1 x 10ˉ³)/(0.150)² = 0.044
E = E⁰ -(0.0592/n)logQc = 1.562v – (0.0592/2)log(0.044) = 1.602v
Answer:
E = 1.602 V
Explanation:
Let's consider the following galvanic cell.
Zn(s) | Zn²⁺(aq, 1.00 × 10⁻³ M) || Ag⁺(aq, 0.150 M) | Ag(s)
The corresponding half-reactions are:
Zn(s) → Zn²⁺(aq, 1.00 × 10⁻³ M) + 2 e⁻
2 Ag⁺(aq, 0.150 M) + 2 e⁻ → 2 Ag(s)
The overall reaction is:
Zn(s) + 2 Ag⁺(aq, 0.150 M) → Zn²⁺(aq, 1.00 × 10⁻³ M) + 2 Ag(s)
We can find the cell potential (E) using the Nernst equation.
E = E° - (0.05916/n) . log Q
where,
E°: standard cell potential
n: moles of electrons transferred
Q: reaction quotient
E = E° - (0.05916/n) . log [Zn²⁺]/[Ag⁺]²
E = 1.562 V - (0.05916/2) . log (1.00 × 10⁻³)/(0.150)²
E = 1.602 V