Answer: The correct option is
(B) 2x = 14.
Step-by-step explanation: We are given to solve the following system of equations by the method of Elimination :
[tex]x+y-6=0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)\\\\x-y-8=0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(ii)[/tex]
Also, to select the resulting equation when we eliminate y.
Adding equations (i) and (ii), we get
[tex](x+y-6)+(x-y-8)=0+0\\\\\Rightarrow 2x-14=0\\\\\Rightarrow 2x=14~~~~~~~~~~[\textup{this is the resulting equation}]\\\\\Rightarrow x=\dfrac{14}{2}\\\\\Rightarrow x=7.[/tex]
From equation (i), we get
[tex]7+y-8=0\\\\\Rightarrow y-1=0\\\\\Rightarrow y=1.[/tex]
Thus, the required solution is (x, y) = (-1, 7) and the resulting equation while eliminating y is 2x = 14.
Option (B) is CORRECT.