Answer:
Step-by-step explanation:
The standard form of a circle is
[tex](x-h)^2+(y-k)^2=r^2[/tex]
where h, k an r are real numbers that can be added at the end.
First, to get to the general form of a circle, you have to expand the binomials. Meaning,
[tex](x-h)^2=x^2-2xh+h^2[/tex] and
[tex](y-k)^2=y^2-2yk+k^2[/tex].
After you do this, then the h^2, k^2, and r^2 terms can be added together to give you one number. Then put everything else in descending order, like this:
[tex]x^2+y^2-(2h)x-(2y)k+(h^2k^2r^2)=0[/tex]
It's very hard to describe when there are no values assigned to the h, k, and r in the equation.
Basic idea:
Expand the binomials and add like terms, setting the whole thing equal to 0.