Respuesta :
Answer: The mass of aluminium chloride that can be formed are 46.3 g
Explanation:
To calculate the number of moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex] ....(1)
- For Aluminium:
Given mass of aluminium = 32 g
Molar mass of aluminium = 26.98 g/mol
Putting values in above equation, we get:
[tex]\text{Moles of aluminium}=\frac{32g}{26.98g/mol}=1.186mol[/tex]
- For Chlorine:
Given mass of chlorine = 37 g
Molar mass of chlorine = 71 g/mol
Putting values in above equation, we get:
[tex]\text{Moles of chlorine gas}=\frac{37g}{71g/mol}=0.521mol[/tex]
For the given chemical equation:
[tex]2Al(s)+3Cl_2(g)\rightarrow 2AlCl_3(s)[/tex]
By Stoichiometry of the reaction:
3 moles of chlorine gas is reacting with 2 moles of aluminium.
So, 0.521 moles of chlorine gas will react with = [tex]\frac{2}{3}\times 0.521=0.347moles[/tex] of aluminium.
As, given amount of aluminium is more than the required amount. Thus, it is considered as an excess reagent.
So, chlorine gas is considered as a limiting reagent because it limits the formation of products.
By Stoichiometry of the reaction:
3 moles of chlorine gas is producing 2 moles of aluminium chloride
So, 0.521 moles of chlorine gas will react with = [tex]\frac{2}{3}\times 0.521=0.347moles[/tex] of aluminium chloride.
Now, calculating the mass of aluminium chloride by using equation 1, we get:
Moles of aluminium chloride = 0.347 moles
Molar mass of aluminium chloride = 133.34 g/mol
Putting all the values in equation 1, we get:
[tex]0.347mol=\frac{\text{Mass of aluminium chloride}}{133.34g/mol}\\\\\text{Mass of aluminium chloride}=46.3g[/tex]
Hence, the mass of aluminium chloride that can be formed are 46.3 g
The quantity of the substance is given by the mass. The mass of aluminium chloride formed when reacting aluminium with chlorine will be 46.3 gm.
What is mass?
Mass is a quantitative factor that determines the amount of substance or matter present in the sample.
The chemical reaction can be shown as,
[tex]\rm 2 Al + 3Cl_{2} \rightarrow 2AlCl_{3}[/tex]
Calculate the number of moles of Aluminium:
[tex]\begin{aligned}\rm Moles & = \dfrac {\rm Mass }{\rm Molar\; mass}\\\\& = \dfrac{32}{26.98}\\\\& = 1.186\;\rm moles\end{aligned}[/tex]
Calculate the number of moles of Chlorine:
[tex]\begin{aligned}\rm Moles & = \dfrac {\rm Mass }{\rm Molar\; mass}\\\\& = \dfrac{37}{71}\\\\& = 0.521 \;\rm moles\end{aligned}[/tex]
From the stoichiometry of the reaction above:
2 moles of aluminium reacts with 3 moles of chlorine
So, moles of aluminium will react with 0.521 moles chorine is,
[tex]\dfrac{2}{3} \times 0.521 = 0.347 \;\rm moles[/tex]
From this, it can infer that chlorine gas is a limiting reagent and aluminium is an excess reagent.
From the stoichiometry of the reaction,
3 moles of chlorine = 2 moles of aluminium chloride
So, 0.521 moles chorine will give,
[tex]\dfrac{2}{3} \times 0.521 = 0.347 \;\text{ moles of aluminium chloride.}[/tex]
Calculate the mass of the aluminium chloride as:
[tex]\begin{aligned} \rm mass &= \rm moles \times molar\; mass\\\\&= 0.347 \times 133.34\\\\&= 46.3 \;\rm g\end{aligned}[/tex]
Therefore, the mass of the aluminium chloride is 46.3 gm.
Learn more about mass and moles here:
https://brainly.com/question/4489250