Rockwell hardness of pins of a certain type is known to have a mean value of 50 and a standard deviation of 1.1. (Round your answers to four decimal places.) (a) If the distribution is normal, what is the probability that the sample mean hardness for a random sample of 8 pins is at least 51?

Respuesta :

Answer: 0.0051

Step-by-step explanation:

Given: Mean : [tex]\mu = 50\text{ inch}[/tex]

Standard deviation : [tex]\sigma =1.1\text{ inch}[/tex]

Sample size : [tex]n=8[/tex]

The formula to calculate z is given by :-

[tex]z=\dfrac{x-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]

For x= 51

[tex]z=\dfrac{51-50}{\dfrac{1.1}{\sqrt{8}}}=2.57129738613\approx2.57[/tex]

The P Value =[tex]P(Z>51)=P(z>2.57)=1-P(z<2.57)=1-0.994915=0.005085\approx0.0051[/tex]

Hence, the probability that the sample mean hardness for a random sample of 8 pins is at least 51 =0.0051

ACCESS MORE