Given the equation y − 4 = three fourths(x + 8) in point-slope form, identify the equation of the same line in standard form.

−three fourthsx + y = 10
3x − 4y = −40
y = three fourthsx + 12
y = three fourthsx + 10

Respuesta :

Answer:

[tex]3x-4y=-40[/tex]

Step-by-step explanation:

The standard form of a linear equation is  [tex]ax+by=c[/tex].

The given line has equation:

[tex]y-4=\frac{3}{4}(x+8)[/tex]

This is the point-slope form of the given line.

To find the standard form, we clear the fraction

[tex]4y-16=3(x+8)[/tex]

We expand the parenthesis now to get:

[tex]4y-16=3x+24[/tex]

We group the variables on the LHS and the constants on the RHS.

[tex]4y-3x=24+16[/tex]

[tex]-3x+4y=40[/tex]

Multiply through by -1

[tex]3x-4y=-40[/tex]

This is of the form: [tex]ax+by=c[/tex].