Respuesta :
Answer:
570 N
Explanation:
Draw a free body diagram on the rider. There are three forces: tension force 15° below the horizontal, drag force 30° above the horizontal, and weight downwards.
The rider is moving at constant speed, so acceleration is 0.
Sum of the forces in the x direction:
∑F = ma
F cos 30° - T cos 15° = 0
F = T cos 15° / cos 30°
Sum of the forces in the y direction:
∑F = ma
F sin 30° - W - T sin 15° = 0
W = F sin 30° - T sin 15°
Substituting:
W = (T cos 15° / cos 30°) sin 30° - T sin 15°
W = T cos 15° tan 30° - T sin 15°
W = T (cos 15° tan 30° - sin 15°)
Given T = 1900 N:
W = 1900 (cos 15° tan 30° - sin 15°)
W = 570 N
The rider weighs 570 N (which is about the same as 130 lb).
![Ver imagen MathPhys](https://us-static.z-dn.net/files/d4f/1c14a64d565d3f70b321a7f6489244e3.jpg)
The weight of the rider is 566.89 N.
The given parameters;
- Tension in the rope, T = 1900 N
- angle of inclination of Tension, = 15⁰
- The force of sail on the rider, = F
- angle of inclination of Force, = 30 ⁰
Let the weight of the rider = W
Apply Newton's second law of motion, to determine the net force in horizontal and vertical direction.
F = ma
Sum of the forces in horizontal direction is calculated as follows;
[tex]\Sigma F_x = 0\\\\Fcos(30) - Tcos(15) = 0\\\\0.866 F - 0.965T = 0\\\\0.866F = 0.965T\\\\F = \frac{0.965T}{0.866} , \ \ T = 1900 \ N\\\\F = \frac{0.965 \times 1900}{0.866} \\\\F = 2,177.21 \ N[/tex]
Sum of the forces in the vertical direction is calculated as follows;
[tex]\Sigma F_y = 0\\\\Fsin(30) - W -Tsin(15) = 0\\\\W = Fsin(30)- Tsin(15)\\\\W = (2117.21 \times 0.5) - (1900\times 0.2588)\\\\W = 566.89 \ N[/tex]
Thus, the weight of the rider is 566.89 N.
Learn more here: https://brainly.com/question/2845632