Respuesta :

ANSWER

[tex]\frac{ - 12x \sqrt{x} - 120x}{ x - 100} [/tex]

EXPLANATION

The given function is

[tex] \frac{ - 12x}{ \sqrt{x} - 10 } [/tex]

In the denominator we have

[tex] \sqrt{x} - 10[/tex]

The conjugate of this surd is

[tex] \sqrt{x} + 10[/tex]

To rationalize this function, we multiply both the numerator and the denominator by the conjugate surd.

[tex]\frac{ - 12x (\sqrt{x} + 10)}{ (\sqrt{x} - 10)(\sqrt{x} + 1)} [/tex]

We apply the identity

[tex] (a + b)(a - b) = {a}^{2} - {b}^{2}[/tex]

in the denominator.

This implies that,

[tex]\frac{ - 12x (\sqrt{x} + 10)}{ (\sqrt{x})^{2} - {10}^{2} } [/tex]

[tex]\frac{ - 12x \sqrt{x} - 120x}{ x - 100} [/tex]