Respuesta :
Answer:
[tex]\frac{3}{2}[/tex]
Step-by-step explanation:
Using the addition formulae for cosine
cos(x ± y) = cosxcosy ∓ sinxsiny
---------------------------------------------------------------
cos(120 + x) = cos120cosx - sin120sinx
= - cos60cosx - sin60sinx
= - [tex]\frac{1}{2}[/tex] cosx - [tex]\frac{\sqrt{3} }{2}[/tex] sinx
squaring to obtain cos² (120 + x)
= [tex]\frac{1}{4}[/tex]cos²x + [tex]\frac{\sqrt{3} }{2}[/tex]sinxcosx + [tex]\frac{3}{4}[/tex]sin²x
--------------------------------------------------------------------
cos(120 - x) = cos120cosx + sin120sinx
= -cos60cosx + sin60sinx
= - [tex]\frac{1}{2}[/tex]cosx + [tex]\frac{\sqrt{3} }{2}[/tex]sinx
squaring to obtain cos²(120 - x)
= [tex]\frac{1}{4}[/tex]cos²x - [tex]\frac{\sqrt{3} }{2}[/tex]sinxcosx + [tex]\frac{3}{4}[/tex]sin²x
--------------------------------------------------------------------------
Putting it all together
cos²x + [tex]\frac{1}{4}[/tex]cos²x + [tex]\frac{\sqrt{3} }{2}[/tex]sinxcosx + [tex]\frac{3}{4}[/tex]sin²x + [tex]\frac{1}{4}[/tex]cos²x - [tex]\frac{\sqrt{3} }{2}[/tex]sinxcosx + [tex]\frac{3}{4}[/tex]sin²x
= cos²x + [tex]\frac{1}{2}[/tex]cos²x + [tex]\frac{3}{2}[/tex]sin²x
= [tex]\frac{3}{2}[/tex]cos²x + [tex]\frac{3}{2}[/tex]sin²x
= [tex]\frac{3}{2}[/tex](cos²x + sin²x) = [tex]\frac{3}{2}[/tex]