Answer: 2:1
Step-by-step explanation:
Volume of a pyramid (V) = [tex]\dfrac{1}{3}\times l\times w\times h\bigg[/tex]
For simplicity, let's assume that l = w = h, then [tex]V = \dfrac{1}{3}s^3[/tex]
Pyramid 1 has a volume of 64:
[tex]64=\dfrac{1}{3}s^3\\\\3\times 64=s^3\\\\\sqrt[3]{3\times 64}=\sqrt[3]{s^3} \\\\4\sqrt[3]{3} =s[/tex]
Pyramid 2 has a volume of 8:
[tex]8=\dfrac{1}{3}s^3\\\\3\times 8=s^3\\\\\sqrt[3]{3\times 8}=\sqrt[3]{s^3} \\\\2\sqrt[3]{3} =s[/tex]
Comparing the sides of Pyramid 1 to the sides of Pyramid 2:
[tex]\dfrac{4\sqrt[3]{3}}{2\sqrt[3]{3}}=\dfrac{2}{1}\implies \text{scale factor of }2:1[/tex]