Respuesta :

Answer: 2:1

Step-by-step explanation:

Volume of a pyramid (V) = [tex]\dfrac{1}{3}\times l\times w\times h\bigg[/tex]

For simplicity, let's assume that l = w = h, then [tex]V = \dfrac{1}{3}s^3[/tex]

Pyramid 1 has a volume of 64:

[tex]64=\dfrac{1}{3}s^3\\\\3\times 64=s^3\\\\\sqrt[3]{3\times 64}=\sqrt[3]{s^3}  \\\\4\sqrt[3]{3} =s[/tex]

Pyramid 2 has a volume of 8:

[tex]8=\dfrac{1}{3}s^3\\\\3\times 8=s^3\\\\\sqrt[3]{3\times 8}=\sqrt[3]{s^3}  \\\\2\sqrt[3]{3} =s[/tex]

Comparing the sides of Pyramid 1 to the sides of Pyramid 2:

[tex]\dfrac{4\sqrt[3]{3}}{2\sqrt[3]{3}}=\dfrac{2}{1}\implies \text{scale factor of }2:1[/tex]

ACCESS MORE