Respuesta :
Answer:
π/2
Step-by-step explanation:
z = 1 − x² − y²
We can integrate by first converting to cylindrical coordinates.
z = 1 − r²
At z = 0, r = 1. So the limits of integration are:
0 ≤ r ≤ 1
0 ≤ θ ≤ 2π
0 ≤ z ≤ 1 − r²
The volume is:
V = ∫ ∫ ∫ r dz dr dθ
V = ∫₀²ᴾ ∫₀¹ ∫₀ᶻ r dz dr dθ
V = ∫₀²ᴾ ∫₀¹ rz |₀ᶻ dr dθ
V = ∫₀²ᴾ ∫₀¹ r (1 − r²) dr dθ
V = ∫₀²ᴾ ∫₀¹ (r − r³) dr dθ
V = ∫₀²ᴾ (½ r² − ¼ r⁴) |₀¹ dθ
V = ∫₀²ᴾ ¼ dθ
V = ¼ θ |₀²ᴾ
V = π/2
Another way we can look at this is by slicing the paraboloid into a stack of thin circular discs. Each disc has a volume of:
dV = π r² dz
We know that r² = 1 - z, so:
dV = π (1 - z) dz
So the volume is:
V = ∫₀¹ π (1 - z) dz
V = π (z - ½ z²) |₀¹
V = π/2
Following are the calculation for the volume:
Plane [tex]\ z = 0[/tex] and paraboloid bind a solid The xy-plane (the plane [tex]\ z = 0[/tex]) on the circle is intersected by the paraboloid [tex]z = 1 -x^2 - y^2 .[/tex]
[tex]\to 1 = x^2 + y^2[/tex]
The paraboloid is represented by the interior of this circle. The integrating limitations in polar coordinates are as follows:
[tex]\to 0 \leq \theta \leq 2\pi ,0 \leq r \leq 1, 0 \leq z \leq 1-r^2[/tex]
The element of differential volume is [tex]r dz dr d\theta[/tex].
Calculating the volume:
[tex]V = \int^{2 \pi}_{0} \int^{1}_{0} \int^{1- r^2}_{0} r\ dz dr d\theta\\\\[/tex]
[tex]= \int^{2 \pi}_{0} \int^{1}_{0} [z]^{1- r^2}_{0} r\ dr d\theta\\\\= \int^{2 \pi}_{0} \int^{1}_{0} r(1- r^2) dr d\theta\\\\= \int^{2 \pi}_{0} \int^{1}_{0} (r- r^3) dr d\theta\\\\= \int^{2 \pi}_{0} [\frac{r^2}{2}- \frac{r^4}{4})^{1}_{0} d\theta\\\\= \int^{2 \pi}_{0} \frac{1}{4} d \theta \\\\= \frac{1}{4} d [\theta]^{2 \pi}_{0} \\\\=\frac{\pi}{2}[/tex]
[tex]z=1-x^2-y^2[/tex]
Learn more:
brainly.com/question/9363272

