Respuesta :

Answer:

π/2

Step-by-step explanation:

z = 1 − x² − y²

We can integrate by first converting to cylindrical coordinates.

z = 1 − r²

At z = 0, r = 1.  So the limits of integration are:

0 ≤ r ≤ 1

0 ≤ θ ≤ 2π

0 ≤ z ≤ 1 − r²

The volume is:

V = ∫ ∫ ∫ r dz dr dθ

V = ∫₀²ᴾ ∫₀¹ ∫₀ᶻ r dz dr dθ

V = ∫₀²ᴾ ∫₀¹ rz |₀ᶻ dr dθ

V = ∫₀²ᴾ ∫₀¹ r (1 − r²) dr dθ

V = ∫₀²ᴾ ∫₀¹ (r − r³) dr dθ

V = ∫₀²ᴾ (½ r² − ¼ r⁴) |₀¹ dθ

V = ∫₀²ᴾ ¼ dθ

V = ¼ θ |₀²ᴾ

V = π/2

Another way we can look at this is by slicing the paraboloid into a stack of thin circular discs.  Each disc has a volume of:

dV = π r² dz

We know that r² = 1 - z, so:

dV = π (1 - z) dz

So the volume is:

V = ∫₀¹ π (1 - z) dz

V = π (z - ½ z²) |₀¹

V = π/2

Following are the calculation for the volume:

Plane [tex]\ z = 0[/tex] and paraboloid bind a solid The xy-plane (the plane [tex]\ z = 0[/tex]) on the circle is intersected by the paraboloid [tex]z = 1 -x^2 - y^2 .[/tex]

[tex]\to 1 = x^2 + y^2[/tex]

The paraboloid is represented by the interior of this circle. The integrating limitations in polar coordinates are as follows:

[tex]\to 0 \leq \theta \leq 2\pi ,0 \leq r \leq 1, 0 \leq z \leq 1-r^2[/tex]

The element of differential volume is [tex]r dz dr d\theta[/tex].

Calculating the volume:  

[tex]V = \int^{2 \pi}_{0} \int^{1}_{0} \int^{1- r^2}_{0} r\ dz dr d\theta\\\\[/tex]

   [tex]= \int^{2 \pi}_{0} \int^{1}_{0} [z]^{1- r^2}_{0} r\ dr d\theta\\\\= \int^{2 \pi}_{0} \int^{1}_{0} r(1- r^2) dr d\theta\\\\= \int^{2 \pi}_{0} \int^{1}_{0} (r- r^3) dr d\theta\\\\= \int^{2 \pi}_{0} [\frac{r^2}{2}- \frac{r^4}{4})^{1}_{0} d\theta\\\\= \int^{2 \pi}_{0} \frac{1}{4} d \theta \\\\= \frac{1}{4} d [\theta]^{2 \pi}_{0} \\\\=\frac{\pi}{2}[/tex]

[tex]z=1-x^2-y^2[/tex]

Learn more:

brainly.com/question/9363272

Ver imagen codiepienagoya
Ver imagen codiepienagoya
ACCESS MORE