The graph at option 4 represents the given equation y = -4x - 3 correctly. This is obtained by calculating the slope and finding the y-intercept.
What is the slope of a line with two points?
The slope of a line given by
m = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]
The ratio of the difference between y-coordinates of two points on the line to the difference of their x coordinates.
Calculation:
The equation is y = -4x - 3
On comparing the equation with the slope-intercept form y = mx + c,
m = -4 and y-intercept c = -3.
Since the y-intercept is -3, the graphs at options 1 and 2 do not represent this equation. So, the remaining graphs may represent the given equation.
Finding the slope for the points in the other two graphs:
The graph at option 3 has a line with two points (2, 5) and (0, -3)
So, the slope is
m = [tex]\frac{-3-5}{0-2}[/tex]
= 4
Thus, it is not the same as the slope of the given equation.
The graph at option 4 has a line with two points (-2, 5) and (0, -3)
So, the slope is
m = [tex]\frac{-3-5}{0+2}[/tex]
= -4
Thus, the line shown in the graph at option 4 has a slope of -4 and the y-intercept is -3. These are the same as the given equation. So, option 4 is correct.
Therefore, the graph at option 4 is the correct representation of the given equation.
Learn more about the graph of an equation in a slope-intercept form here:
https://brainly.com/question/19440459
#SPJ2