Respuesta :
Answer:
[tex]\frac{11}{12}\pi r^{2}h\ units^{3}[/tex]
Step-by-step explanation:
we know that
Te volume of the cone is equal to
[tex]V=\frac{1}{3}\pi r^{2}h[/tex]
we have
[tex]r=(r/2)\ units[/tex]
substitute
[tex]V=\frac{1}{3}\pi (r/2)^{2}h[/tex]
[tex]V=\frac{1}{12}\pi r^{2}h[/tex]
Te volume of the cylinder is equal to
[tex]V=\pi r^{2}h[/tex]
we know that
To find the volume of the space remaining in the cylinder after the cone is placed inside it, subtract the volume of the cone from the volume of cylinder
so
[tex]\pi r^{2}h-\frac{1}{12}\pi r^{2}h=\frac{11}{12}\pi r^{2}h\ units^{3}[/tex]
11/12 Pie R^2H
Step-by-step explanation:
I just took the test, good luck!