Answer: 0.14
Step-by-step explanation:
Given: Mean : [tex]\lambda=15\text{ per seconds}[/tex]
In minutes , Mean : [tex]\lambda=4\text{ per minute}[/tex]
The exponential distribution function with parameter [tex]\lambda[/tex] is given by :-
[tex]f(t)=\lambda e^{-\lambda t}, \text{ for }x\geq0[/tex]
The probability of waiting more than 30 seconds i.e. 0.5 minutes is given by the exponential function :-
[tex]P(X\geq0.5)=1-P(X\leq0.5)\\\\=1-\int^{0.5}_{0}4e^{-4t}dt\\\\=1-[-e^{-4t}]^{0.5}_{0}\\\\=1-(1-e^{-2})=1-0.86=0.14[/tex]
Hence, the probability of waiting more than 30 seconds = 0.14