Respuesta :

Answer:

So, the inverse of function

[tex]f(x) = \frac{-1}{2} \sqrt{x+3}[/tex] is [tex]f^{-1}(x)= 4x^2-3[/tex]

Step-by-step explanation:

We need to find the inverse of the given function

[tex]f(x) = \frac{-1}{2} \sqrt{x+3}[/tex]

To find the inverse we replace f(x) with y

[tex]y = \frac{-1}{2} \sqrt{x+3}[/tex]

Now, replacing x with y and y with x

[tex]x = \frac{-1}{2} \sqrt{y+3}[/tex]

Now, we will find the value of y in the above equation

Multiplying both sides by -2

[tex]-2x = \sqrt{y+3}[/tex]

Taking square on both sides

[tex](-2x)^2 = (\sqrt{y+3})^2[/tex]

[tex]4x^2 = y+3[/tex]  

Finding value of y

[tex]y = 4x^2-3[/tex]

Replacing y with f⁻¹(x)

[tex]f⁻¹(x)= 4x^2-3[/tex]

So, the inverse of function

[tex]f(x) = \frac{-1}{2} \sqrt{x+3}[/tex] is [tex]f^{-1}(x)= 4x^2-3[/tex]

ANSWER

[tex]f^{ - 1} (x) =4 {x}^{2}- 3[/tex]

EXPLANATION

A function will have an inverse if and only if it is a one-to-one function.

The given function is

[tex]f(x) = - \frac{1}{2} \sqrt{x + 3} \: \: where \: \: x \geqslant - 3 [/tex]

To find the inverse of this function, we let

[tex]y=- \frac{1}{2} \sqrt{x + 3}[/tex]

Next, we interchange x and y to get,

[tex]x=- \frac{1}{2} \sqrt{y+ 3}[/tex]

We now solve for y.

We must clear the fraction by multiplying through with -2 to get;

[tex] - 2x = \sqrt{y + 3} [/tex]

Square both sides of the equation to get:

[tex](- 2x)^{2} = (\sqrt{y+ 3}) ^{2} [/tex]

[tex]4x^{2} = y + 3[/tex]

Add -3 to both sides

[tex]4 {x}^{2} - 3 = y[/tex]

Or

[tex]y = 4 {x}^{2}- 3[/tex]

This implies that,

[tex]f^{ - 1} (x) =4 {x}^{2}- 3[/tex]

This is valid if and only if

[tex]x \geqslant - 3[/tex]

RELAXING NOICE
Relax