Respuesta :
Answer:
So, the inverse of function
[tex]f(x) = \frac{-1}{2} \sqrt{x+3}[/tex] is [tex]f^{-1}(x)= 4x^2-3[/tex]
Step-by-step explanation:
We need to find the inverse of the given function
[tex]f(x) = \frac{-1}{2} \sqrt{x+3}[/tex]
To find the inverse we replace f(x) with y
[tex]y = \frac{-1}{2} \sqrt{x+3}[/tex]
Now, replacing x with y and y with x
[tex]x = \frac{-1}{2} \sqrt{y+3}[/tex]
Now, we will find the value of y in the above equation
Multiplying both sides by -2
[tex]-2x = \sqrt{y+3}[/tex]
Taking square on both sides
[tex](-2x)^2 = (\sqrt{y+3})^2[/tex]
[tex]4x^2 = y+3[/tex]
Finding value of y
[tex]y = 4x^2-3[/tex]
Replacing y with f⁻¹(x)
[tex]f⁻¹(x)= 4x^2-3[/tex]
So, the inverse of function
[tex]f(x) = \frac{-1}{2} \sqrt{x+3}[/tex] is [tex]f^{-1}(x)= 4x^2-3[/tex]
ANSWER
[tex]f^{ - 1} (x) =4 {x}^{2}- 3[/tex]
EXPLANATION
A function will have an inverse if and only if it is a one-to-one function.
The given function is
[tex]f(x) = - \frac{1}{2} \sqrt{x + 3} \: \: where \: \: x \geqslant - 3 [/tex]
To find the inverse of this function, we let
[tex]y=- \frac{1}{2} \sqrt{x + 3}[/tex]
Next, we interchange x and y to get,
[tex]x=- \frac{1}{2} \sqrt{y+ 3}[/tex]
We now solve for y.
We must clear the fraction by multiplying through with -2 to get;
[tex] - 2x = \sqrt{y + 3} [/tex]
Square both sides of the equation to get:
[tex](- 2x)^{2} = (\sqrt{y+ 3}) ^{2} [/tex]
[tex]4x^{2} = y + 3[/tex]
Add -3 to both sides
[tex]4 {x}^{2} - 3 = y[/tex]
Or
[tex]y = 4 {x}^{2}- 3[/tex]
This implies that,
[tex]f^{ - 1} (x) =4 {x}^{2}- 3[/tex]
This is valid if and only if
[tex]x \geqslant - 3[/tex]
