What is the equation of a line, in general form, that passes through point (1, -2) and has a slope of 1/3

3x - y - 7 = 0
x - 3y + 7 = 0
x - 3y - 7 = 0

Respuesta :

Answer:

x-3y-7=0

Step-by-step explanation:

Given

m=1/3

The standard form of point slop form is:

y=mx+b

To find the value of b, we will put the point in the standard form

So,

[tex]-2=\frac{1}{3}(1)+b[/tex]

Solving for b[tex]-2=\frac{1}{3}+b\\-2-\frac{1}{3}=b\\\frac{-6-1}{3}=b\\b=\frac{-7}{3}[/tex]

Putting the values of b and m in standard form:

[tex]y=\frac{1}{3}x+\frac{-7}{3}\\y=\frac{1}{3}x-\frac{7}{3}Multiplying\ both\ sides\ by\ 3\\3y=x-7\\-x+3y+7=0\\Can\ also\ be\ written\ as\\x-3y-7=0[/tex]