Find the interest rate needed for an investment of $10,000 to grow to an amount of $11,000 in 4 years if interest is compounded quarterly. (Round your answer to the nearest hundredth of a percent.) %

Respuesta :

Answer:

[tex]2.39\%[/tex]  

Step-by-step explanation:

we know that    

The compound interest formula is equal to  

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]  

where  

A is the Final Investment Value  

P is the Principal amount of money to be invested  

r is the rate of interest  in decimal

t is Number of Time Periods  

n is the number of times interest is compounded per year

in this problem we have  

[tex]t=4\ years\\ P=\$10,000\\A=\$11,000\\ r=?\\n=4[/tex]  

substitute in the formula above  

[tex]11,000=10,000(1+\frac{r}{4})^{4*4}[/tex]  

[tex]1.1=(1+\frac{r}{4})^{16}[/tex]  

Elevated both sides to (1/16)

[tex]1.005975=(1+\frac{r}{4})[/tex]  

[tex]0.005975=\frac{r}{4}[/tex]  

[tex]r=0.005975*4=0.0239[/tex]  

Convert to percent

[tex]0.0239*100=2.39\%[/tex]  

ACCESS MORE