Answer:
[tex]A'(t)=3\sqrt{t}+\frac{3}{2\sqrt{t}}[/tex]
Step-by-step explanation:
Given : Length of rectangle = 2t+3
Height of rectangle = [tex]\sqrt{t}[/tex]
To Find: Find the rate of the change of the area with respect to time.
Solution:
Area of rectangle = [tex]Length \times Width[/tex]
= [tex](2t+3) \times \sqrt{t}[/tex]
= [tex]2t^{\frac{3}{2}}+3t^{\frac{1}{2}}[/tex]
= [tex]2t^{\frac{3}{2}}+3t^{\frac{1}{2}}[/tex]
So, [tex]A(t)=2t^{\frac{3}{2}}+3t^{\frac{1}{2}}[/tex]
[tex]\frac{d}{dx} (x^n)=nx^{n-1}[/tex]
[tex]A'(t)=\frac{3}{2} \times 2t^{\frac{3}{2}-1}+\frac{1}{2} \times 3t^{\frac{1}{2}-1}[/tex]
[tex]A'(t)=3t^{\frac{1}{2}}+\frac{3}{2}t^{\frac{-1}{2}}[/tex]
[tex]A'(t)=3t^{\frac{1}{2}}+\frac{3}{2}t^{\frac{-1}{2}}[/tex]
[tex]A'(t)=3\sqrt{t}+\frac{3}{2\sqrt{t}}[/tex]
Hence the rate of the change of the area with respect to time is [tex]A'(t)=3\sqrt{t}+\frac{3}{2\sqrt{t}}[/tex]