Which buffer would be better able to hold a steady pH on the addition of strong acid, buffer 1 or buffer 2? Explain. Buffer 1: a solution containing 0.10 M NH4Cl and 1 M NH3. Buffer 2: a solution containing 1 M NH4Cl and 0.10 M NH3

Respuesta :

Answer:

Buffer 1.

Explanation:

Ammonia is a weak base. It acts like a Bronsted-Lowry Base when it reacts with hydrogen ions.

[tex]\rm NH_3\; (aq) + H^{+}\; (aq) \to {NH_4}^{+}\; (aq)[/tex].

[tex]\rm NH_3[/tex] gains one hydrogen ion to produce the ammonium ion [tex]\rm {NH_4}^{+}[/tex]. In other words, [tex]\rm {NH_4}^{+}[/tex] is the conjugate acid of the weak base [tex]\rm NH_3[/tex].

Both buffer 1 and 2 include

  • the weak base ammonia [tex]\rm NH_3[/tex], and
  • the conjugate acid of the weak base [tex]\rm {NH_4}^{+}[/tex].

The ammonia [tex]\rm NH_3[/tex] in the solution will react with hydrogen ions as they are added to the solution:

[tex]\rm NH_3\; (aq) + H^{+}\; (aq) \to {NH_4}^{+}\; (aq)[/tex].

There are more [tex]\rm NH_3[/tex] in the buffer 1 than in buffer 2. It will take more strong acid to react with the majority of [tex]\rm NH_3[/tex] in the solution. Conversely, the pH of buffer 1 will be more steady than that in buffer 2 when the same amount of acid has been added.