type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).
Consider the given function.

pic below

type the correct answer in each box Use numerals instead of words If necessary use for the fraction bars Consider the given function pic below class=

Respuesta :

Answer:

  • To determine the inverse of the given function,

Change f(x) to y , switch x and y , and solve for y.

  • The resulting function may be written as:

                   [tex]f^{-1}x=\dfrac{\ln (x+4)}{2}[/tex]

Step-by-step explanation:

We know that while finding the inverse of a function the following steps are to be followed:

  • We first put f(x)=y
  • Then we interchange x and y in the expression.
  • and then we finally solve for y.

We are given a function f(x) by:

[tex]f(x)=e^{2x}-4[/tex]

Now, we put

[tex]f(x)=y[/tex]

i.e.

[tex]e^{2x}-4=y[/tex]

Now, we interchange x and y as follows:

[tex]e^{2y}-4=x[/tex]

and finally we solve for y

i.e.

[tex]e^{2y}=x+4[/tex]

Taking logarithmic function both the side of the equation we get:

[tex]2y=\ln (x+4)\\\\i.e.\\\\y=\dfrac{\ln (x+4)}{2}[/tex]

i.e.

[tex]f^{-1}x=\dfrac{\ln (x+4)}{2}[/tex]