Respuesta :
Answer:
[tex]\boxed{\text{(a) 209 mL; (b) } 6.09 \times 10^{23}}[/tex]
Explanation:
(a) Gas produced at cathode.
(i). Identity
The only species known to be present are Cu, H⁺, and H₂O.
Only the H⁺ and H₂O can be reduced.
The corresponding reduction half reactions are:
(1) 2H₂O + 2e⁻ ⇌ H₂ + 2OH⁻; E° = -0.8277 V
(2) 2H⁺ +2e⁻ ⇌ H₂; E° = 0.0000 V
Two important points to remember when using a table of standard reduction potentials:
- The higher up a species is on the right-hand side, the more readily it will lose electrons (be oxidized).
- The lower down a species is on the left-hand side, the more readily it will accept electrons (be reduced}.
H⁺ is below H₂O, so H⁺ is reduced to H₂.
The cathode reaction is 2H⁺ +2e⁻ ⇌ H₂, and the gas produced at the cathode is hydrogen.
(ii) Volume
a. Anode reaction
The only species that can be oxidized are Cu and H₂O.
The corresponding half reactions are:
(3) Cu²⁺ + 2e⁻ ⇌ Cu; E° = 0.3419 V
(4) O₂ + 4H⁺ + 4e⁻ ⇌ 2H₂O E° = 1.229 V
Cu is above H₂O, so Cu is more easily oxidized.
The anode reaction is Cu ⇌ Cu²⁺ + 2e⁻.
b. Overall reaction:
Cu ⇌ Cu²⁺ + 2e⁻
2H⁺ +2e⁻ ⇌ H₂
Cu + 2H⁺ ⇌ Cu²⁺ + H₂
c. Moles of Cu lost
[tex]n_{\text{Cu}} = \text{0.584 g } \times \dfrac{\text{1 mol}}{\text{63.55 g}} = 9.190 \times 10^{-3}\text{ mol Cu}[/tex]
d. Moles of H₂ formed
[tex]n_{\text{H}_{2}}} = 9.190 \times 10^{-3}\text{ mol Cu} \times \dfrac{\text{1 mol H}_{2}}{\text{1 mol Cu}} =9.190 \times 10^{-3}\text{ mol H}_{2}[/tex]
e. Volume of H₂ formed
Volume of 1 mol at STP (0 °C and 1 bar) = 22.71 mL
[tex]V = 9.190 \times 10^{-3}\text{ mol}\times \dfrac{\text{22.71 L}}{\text{1 mol}} = \text{0.209 L} = \boxed{\textbf{209 mL}}[/tex]
(b) Avogadro's number
(i) Moles of electrons transferred
[tex]\text{Moles of electrons} = 9.190 \times 10^{-3}\text{ mol Cu}\times \dfrac{\text{2 mol electrons}}{\text{1 mol Cu}}\\\\\\= \text{0.018 38 mol electrons}[/tex]
(ii) Number of coulombs
Q = It
Q = \text{1.18 C/s} \times 1.52 \times 10^{3} \text{ s} = 1794 C
(iii). Number of electrons
[tex]n = \text{ 1794 C} \times \dfrac{\text{1 electron}}{1.6022 \times 10^{-19} \text{ C}} = 1.119 \times 10^{22} \text{ electrons}[/tex]
(iv) Avogadro's number
[tex]N_{\text{A}} = \dfrac{1.119 \times 10^{22} \text{ electrons}}{\text{0.018 38 mol}} = \boxed{6.09 \times 10^{23} \textbf{ electrons/mol}}[/tex]