Respuesta :

Answer:

False

Step-by-step explanation:

We first write the equation in the form ax² + bx + c=0 which gives us:

3x² - 6x + 9=0

Given the quadratic formula,

x= [-b ±√(b²- 4ac)]/2a ,the discriminant proves whether the equation has real roots or not.

The discriminant, which is the value under the root sign, may either be positive, negative or zero.

Positive discriminant- the equation has two real roots

Negative discriminant- the equation has no real roots

Zero discriminant - The equation has two repeated roots.

In the provided equation, b²-4ac results into:

(-6)²- (4×3×9)

=36-108

= -72

The result is negative therefore the equation has no real solutions.

Answer: FALSE

Step-by-step explanation:

Rewrite the given equation in the form [tex]ax^2+bx+c=0[/tex], then:

[tex]3x^2 = 6x - 9\\3x^2-6x +9=0[/tex]

Now, we need to calculate the Discriminant with this formula:

[tex]D=b^2-4ac[/tex]

We can identify that:

[tex]a=3\\b=-6\\c=9[/tex]

Then, we only need to substitute these values into the formula:

 [tex]D=(-6)^2-4(3)(9)[/tex]

 [tex]D=-72[/tex]

Since [tex]D<0[/tex] the equation has no real solutions.