Respuesta :

Answer:

The zeros are

[tex]x1=\frac{-5+\sqrt{5}} {2}[/tex]   and [tex]x2=\frac{-5-\sqrt{5}} {2}[/tex]

Step-by-step explanation:

we know that

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]f(x)=x^{2} +5x+5[/tex]  

To find the zeros equate the function to 0

[tex]x^{2} +5x+5=0[/tex]  

so

[tex]a=1\\b=5\\c=5[/tex]

substitute in the formula

[tex]x=\frac{-5(+/-)\sqrt{5^{2}-4(1)(5)}} {2(1)}[/tex]

[tex]x=\frac{-5(+/-)\sqrt{5}} {2}[/tex]

[tex]x1=\frac{-5+\sqrt{5}} {2}[/tex]

[tex]x2=\frac{-5-\sqrt{5}} {2}[/tex]

ACCESS MORE