Respuesta :
Answer:
T = 50 + 80e^(-0.2t)
Explanation:
Newton's law of cooling says the rate of change of temperature with respect to time is proportional to the temperature difference:
dT/dt = k (T − Tₐ)
Separating the variables and integrating:
dT / (T − Tₐ) = k dt
ln (T − Tₐ) = kt + C
T − Tₐ = Ce^(kt)
T = Tₐ + Ce^(kt)
Given that Tₐ = 50 and k = -0.2:
T = 50 + Ce^(-0.2t)
At t = 0, T = 130.
130 = 50 + Ce^(0)
130 = 50 + C
C = 80
Therefore:
T = 50 + 80e^(-0.2t)
The formula for the object cooling is [tex]T(t) = 50 + 80\cdot e^{-0.2\cdot t}[/tex], where [tex]t[/tex] is in minutes.
The object is cooled by heat mechanism of Convection, Convection is a Heat Transfer mechanism in which is a solid object is cooled due to a fluid in motion and is described by the Newton's Law of Cooling, whose Differential Equation is:
[tex]\frac{dT}{dt} = -r\cdot (T-T_{m})[/tex] (1)
Where:
[tex]T[/tex] - Temperature of the solid, in degrees Fahrenheit.
[tex]r[/tex] - Cooling rate, in [tex]\frac{1}{min}[/tex].
[tex]T_{m}[/tex] - Water temperature, in degrees Fahrenheit.
The solution of this Differential Equation is:
[tex]T(t) = T_{m} + (T_{o}-T_{m})\cdot e^{-r\cdot t}[/tex] (2)
Where [tex]T_{o}[/tex] is the initial temperature of the solid, in degrees Fahrenheit.
If we know that [tex]T_{m} = 50\,^{\circ}F[/tex], [tex]T_{o} = 130\,^{\circ}F[/tex] and [tex]r = 0.2[/tex], then the formula for the object cooling is:
[tex]T(t) = 50 + 80\cdot e^{-0.2\cdot t}[/tex]
The formula for the object cooling is [tex]T(t) = 50 + 80\cdot e^{-0.2\cdot t}[/tex], where [tex]t[/tex] is in minutes.
Here is a question related to the Newton's Law of Cooling: https://brainly.com/question/13724658
![Ver imagen xero099](https://us-static.z-dn.net/files/db1/2fcb23da8838810749cf72f21755887f.png)