Respuesta :
Answer:
[tex]y=-\frac{4}{3}x+\frac{5}{3}[/tex]
[tex]4x+3y=5[/tex]
Step-by-step explanation:
we have
[tex]y-11=-\frac{4}{3}(x+7)[/tex] -----> equation of the line into point slope form
step 1
Find the equation of the line into slope intercept form
[tex]y=mx+b[/tex]
where
m is the slope
b is the y-intercept (value of y when the value of x is equal to zero)
For x=0
[tex]y-11=-\frac{4}{3}(0+7)[/tex]
[tex]y=-\frac{28}{3}+11[/tex]
[tex]y=\frac{5}{3}[/tex]
therefore
[tex]b=\frac{5}{3}[/tex]
substitute
[tex]y=-\frac{4}{3}x+\frac{5}{3}[/tex] ----> equation of the line into slope intercept form
step 2
Find the equation of the line in standard form
[tex]Ax+By=C[/tex]
we have
[tex]y=-\frac{4}{3}x+\frac{5}{3}[/tex]
Multiply by 3 both sides
[tex]3y=-4x+5[/tex]
[tex]4x+3y=5[/tex] ---> equation of the line in standard form