Respuesta :
Answer:
61.8 N
Explanation:
Given data
- Charge of the protons (q): 1.60 × 10⁻¹⁹ Coulomb
- Distance between the protons (d): 1.93 × 10⁻¹⁵ meters
- Coulomb's constant (k): 8.99 × 10⁹ N.m².C⁻²
We can find the magnitude of the electric force (F) between the two protons using Coulomb's law.
[tex]F=k.\frac{q_{1}q_{2}}{d^{2} } \\F=8.99 \times 10^{9} N.m^{2} .C^{-2} .\frac{(1.60 \times 10^{-19}C)^{2} }{(1.93 \times 10^{-15}m)^{2} } \\F=61.8N[/tex]
The magnitude of the electric force is 61.8 N.
The magnitude of the electric force between two protons at this distance is mathematically given as
F=61.8N
What is the magnitude of the electric force (in N) between two protons at this distance?
Question Parameter(s):
The protons in a nucleus are approximately 2 ✕ 10^−15 m apart.
a distance d = 1.93 ✕ 10^−15 m apart.
Generally, the equation for the electric force (F) is mathematically given as
[tex]F=k.\frac{q_{1}q_{2}}{d^{2} }[/tex]
Therefore
[tex]F=8.99* 10^{9} N.m^{2} .C^{-2} .\frac{(1.60 * 10^{-19}C)^{2} }{(1.93* 10^{-15}m)^{2} }[/tex]
F=61.8N
In conclusion, The force is
F=61.8N
Read more about Force
https://brainly.com/question/13370981