Answer:
[tex] \frac{ - \sqrt{2} + \sqrt{6} }{4} [/tex]
Step-by-step explanation:
Write 11pi/12 as a sum.
[tex] \sin( \frac{11\pi}{12} ) = \sin( \frac{\pi}{6} + \frac{3\pi}{4} ) [/tex]
Using sin(t+s)= sin(t)cos(s) + cos(t)sin(s), expand the expression.
[tex] \sin( \frac{\pi}{6} ) \cos( \frac{3\pi}{4} ) + \cos( \frac{\pi}{6} ) \sin( \frac{3\pi}{4} ) [/tex]
Using trigonometric values, calculate.
[tex] \frac{1}{2} \times ( - \frac{ \sqrt{2} }{2} ) + \frac{ \sqrt{3} }{2} \times \frac{ \sqrt{2} }{2} [/tex]
Multiply to get
[tex] - \frac{ \sqrt{2} }{4} \ + \frac{ \sqrt{6} }{4} [/tex]
Which equals
[tex] \frac{ - \sqrt{2} + \sqrt{6} }{4} [/tex]
Hope this helps!