ANSWER
Extraneous solution: x=6
Real solution: x=11
EXPLANATION
The given expression is
[tex] \sqrt{x - 2} + 8 = x[/tex]
Add -8 to both sides:
[tex]\sqrt{x - 2} + 8 + - 8= x + - 8[/tex]
[tex] \implies\sqrt{x - 2} = x - 8[/tex]
Square both sides.
[tex]\implies(\sqrt{x - 2} )^{2} =( x - 8)^{2} [/tex]
[tex]x - 2=( x - 8)^{2} [/tex]
We expand the to get
[tex]x - 2 = {x}^{2} - 16x + 64[/tex]
Write in standard quadratic form.
[tex] {x}^{2} - 16x - x + 64 + 2 = 0[/tex]
[tex] {x}^{2} - 17x + 66 = 0[/tex]
Factor to get:
[tex](x - 6)(x - 11) = 0[/tex]
[tex]x = 6 \: or \: \: x = 11[/tex]
We check for extraneous solutions by substituting each value of x into the original equation.
When x=6
[tex]\sqrt{6 - 2} + 8 = 6[/tex]
[tex]\sqrt{4} + 8 =6[/tex]
[tex]2 + 8 = 10 \ne8[/tex]
Hence x=6 is an extraneous solution.
When x=11
[tex]\sqrt{11- 2} + 8 = 11[/tex]
[tex]\sqrt{9} + 8 = 11[/tex]
[tex]3 + 8 = 11[/tex]
This statement is true.
Hence x=11 is the only solution.