Respuesta :

ANSWER

Point-slope form:

[tex]y - 3 = -\frac{3}{5} (x + 2)[/tex]

Slope-intercept form:

[tex]y= -\frac{3}{5} x + \frac{9}{5}[/tex]

EXPLANATION

The graphed line passes through

[tex](-2,3) \: \: and \: \: (3,0)[/tex]

The slope of this line is determined using

[tex]m = \frac{y_2-y_1}{x_2-x_1} [/tex]

We substitute the points to get;

[tex]m = \frac{0 - 3}{3 - - 2} [/tex]

[tex]m = -\frac{3}{5} [/tex]

The point-slope formula is:

[tex]y-y_1 = m(x - x_1)[/tex]

Substitute the first point and slope to get:

[tex]y - 3 = -\frac{3}{5} (x - - 2)[/tex]

[tex]y - 3 = -\frac{3}{5} (x + 2)[/tex]

To find the slope-intercept form, we expand to get:

[tex]y= -\frac{3}{5} x - \frac{6}{5} + 3[/tex]

[tex]y= -\frac{3}{5} x + \frac{9}{5} [/tex]

Answer:

Slope

[tex]m=-\frac{3}{5}[/tex]

point-slope form

[tex]y=-\frac{3}{5}(x-3)[/tex]

slope-intersection form

[tex]y=-\frac{3}{5}x+1.8[/tex]

Step-by-step explanation:

The equation of a line in the point-slope form has the following formula:

[tex]y-y_0 = m (x-x_0)[/tex]

Where m is the slope and [tex](x_0, y_0)[/tex] is a point belonging to the line.

The equation of a line in the slope-intersection form has the following formula:

[tex]y = mx + b[/tex]

Where b is the intersection of the line with the y axis.

To calculate the slope of the line knowing 2 points we use the following formula:

[tex]m=\frac{y_1-y_0}{x_1-x_0}[/tex]

In this case:

[tex]x_0 =3\\y_0=0\\x_1=-2\\y_1=3[/tex]

So

[tex]m=\frac{3-0}{-2-3}[/tex]

[tex]m=-\frac{3}{5}[/tex]

So the equation of a line in the point-slope form

[tex]y-0 =-\frac{3}{5}(x-3)[/tex]

[tex]y=-\frac{3}{5}(x-3)[/tex]

The equation of a line in the slope-intersection form is:

[tex]y-0=-\frac{3}{5}(x-3)[/tex]

[tex]y=-\frac{3}{5}(x-3)[/tex]

[tex]y=-\frac{3}{5}x+\frac{9}{5}[/tex]

[tex]y=-\frac{3}{5}x+1.8[/tex]

with [tex]b=1.8[/tex]

ACCESS MORE