Respuesta :

Answer: x = 6, x = -4

Step-by-step explanation:

Find two numbers whose product is the c-value (-24) and sum is the b-value (-2):

0 = x² - 2x - 24

                    ∧

                   1 -24

                   2 -12

                   3  -8

                   4  -6 = -2    This works!

0 = (x + 4)(x - 6)

Apply the Zero-Product Property (set each factor equal to zero and solve)

0 = x + 4      0 = x - 6

-4 = x            6 = x

The zeros of a function are the value of x, when the function equals 0

The zeros of [tex]\mathbf{p(x) = x^2 - 2x - 24}[/tex] are 6 and -4

The function is given as;

[tex]\mathbf{p(x) = x^2 - 2x - 24}[/tex]

Expand

[tex]\mathbf{p(x) = x^2 +4x- 6x - 24}[/tex]

Factorize

[tex]\mathbf{p(x) = x(x +4)- 6(x + 4)}[/tex]

Factor out x + 4

[tex]\mathbf{p(x) = (x -6)(x + 4)}[/tex]

Set to 0

[tex]\mathbf{(x -6)(x + 4) = 0}[/tex]

Split

[tex]\mathbf{x -6 = 0\ or\ x + 4 = 0}[/tex]

Solve for x

[tex]\mathbf{x = 6\ or\ x = -4}[/tex]

Hence, the zeros of [tex]\mathbf{p(x) = x^2 - 2x - 24}[/tex] are 6 and -4

Read more about zeros of functions at:

https://brainly.com/question/22101211

ACCESS MORE