Answer:
[tex]2.5 rad/s^2, 688^{\circ}[/tex]
Explanation:
The angular acceleration is given by:
[tex]\alpha = \frac{\omega_f - \omega_i}{t}[/tex]
where
[tex]\omega_f = 74.0 rev/min \cdot (\frac{2\pi rad/rev}{60 s/min})=7.75 rad/s[/tex] is the final angular speed
[tex]\omega_i = 0[/tex] is the initial angular speed
t = 3.10 s is the time interval
Solving the equation,
[tex]\alpha = \frac{7.75 rad/s - 0}{3.10 s}=2.5 rad/s^2[/tex]
Now we can find the angular displacement by using:
[tex]\theta = \omega_i t + \frac{1}{2}\alpha t^2[/tex]
Substituting,
[tex]\theta=0+\frac{1}{2}(2.5 rad/s^2)(3.10 s)^2=12.0 rad[/tex]
In degrees:
[tex]\theta = \frac{12.0 rad}{2\pi}\cdot 360^{\circ}=688^{\circ}[/tex]