Respuesta :

Answer:

-k (k+1) (k+2)

Step-by-step explanation:

-2k - k³ - 3k² (factor-k out)

-k (2 + k² + 3k) (rearrange to standard quadratic form)

-k (k² + 3k + 2) (factor expression inside parentheses using your favorite method)

-k (k+1) (k+2)

Answer:

Option c.

Step-by-step explanation:

The given expression is

[tex]-2k-k^3-3k^2[/tex]

We need to find the factor form of the given expression.

Taking out HCF.

[tex]-k(2+k^2+3k)[/tex]

Arrange the terms according to there degree.

[tex]-k(k^2+3k+2)[/tex]

Splitting the middle terms we get

[tex]-k(k^2+2k+k+2)[/tex]

[tex]-k((k^2+2k)+(k+2))[/tex]

[tex]-k(k(k+2)+(k+2))[/tex]

[tex]-k(k+1)(k+2)[/tex]

The factor form of given expression is -k(k+1)(k+2). Therefore, the correct option is c.