Respuesta :

Answer:  [tex]\bold{\dfrac{1}{(x+1)(x-2)}}[/tex]

Step-by-step explanation:

[tex]\dfrac{x+2}{4x^2+5x+1}\times \dfrac{4x+1}{x^2-4}\\\\\\\text{Factor the quadratics:}\\\dfrac{x+2}{(4x+1)(x+1)}\times \dfrac{4x+1}{(x-2)(x+2)}\\\\\\\text{Simplify - cross out (4x+1) and (x+2):}\\\dfrac{1}{(x+1)(x-2)}[/tex]

Answer:

[tex]\frac{1}{x^2 - x - 2}[/tex]

Step-by-step explanation:

The given expression is

[tex]\frac{x+2}{4x^2+5x+1}\times \frac{4x+1}{x^2-4}[/tex]

Factorize the denominators.

[tex]\frac{x+2}{4x^2+4x+x+1}\times \frac{4x+1}{x^2-2^2}[/tex]

[tex]\frac{x+2}{4x(x+1)+1(x+1)}\times \frac{4x+1}{(x-2)(x+2)}[/tex]             [tex][\because a^2-b^2=(a-b)(a+b)][/tex]

[tex]\frac{x+2}{(x+1)(4x+1)}\times \frac{4x+1}{(x-2)(x+2)}[/tex]

Cancel out common factors.

[tex]\frac{1}{(x+1)}\times \frac{1}{(x-2)}[/tex]

[tex]\frac{1}{(x+1)(x-2)}[/tex]

On further simplification we get

[tex]\frac{1}{x^2 - x - 2}[/tex]

Therefore, the simplified form of the given expression is [tex]\frac{1}{x^2 - x - 2}[/tex].

ACCESS MORE